STRUCTURE OF THE O-ANTIGEN POLYSACCHARIDE OF Haemophilus pleuropneumoniae SEROTYPE 3 (ATCC 27090) LIPOPOLYSACCHARIDE*

ELEONORA ALTMAN, JEAN-ROBERT BRISSON, AND MALCOLM B. PERRY

Division of Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

(Received October 14th, 1987; accepted for publication, December 19th, 1987)

ABSTRACT

The structure of the O-antigen polysaccharide of *Haemophilus pleuro-pneumoniae* serotype 3 (ATCC 27090) S-type lipopolysaccharide was investigated by methylation analysis, partial hydrolysis, periodate oxidation, and ¹H- and ¹³C-n.m.r. spectroscopy, and concluded to be composed of linear pentasaccharide repeating-units having the structure:

$$\rightarrow$$
3)- α -D-Glcp-(1 \rightarrow 2)- β -D-Galf-(1 \rightarrow 6)- α -D-Galp-(1 \rightarrow 6)- β -D-Glcp-(1 \rightarrow 3)- β -D-Galf-(1 \rightarrow $_n$.

INTRODUCTION

The Gram-negative bacterium *Haemophilus pleuropneumoniae* is a major cause of pleuropneumonia in pigs. The organism is encapsulated and ten serotypes, based on the capsular antigens, have been identified¹⁻³. The endotoxins are implicated in the pathogenesis of porcine pleuropneumonia⁴ and the serologic cross-reactive immunodeterminants are located in the LPS⁵.

Recently, the structures of the O-specific polysaccharides of the S-form LPS from *H. pleuropneumoniae* serotypes 1 and 2 have been determined^{6,7}. In seeking to understand the immunobiology of *H. pleuropneumoniae* infections in pigs and explain the serology on a structural basis, we now report the structure of the O-specific polysaccharide of *H. pleuropneumoniae* serotype 3 S-type LPS.

EXPERIMENTAL

Bacterial culture. — Haemophilus pleuropneumoniae serotype 3 (ATCC 27090), from the collection of the Western College of Veterinary Medicine (University of Saskatchewan, Saskatoon), was grown in Bacto PPLO broth w/o CV (Difco), supplemented with NAD, D-glucose, and horse serum, in a 28-L fermenter

^{*}Dedicated to Professor Bengt Lindberg.

[†]Issued as NRCC No. 28463.

(New Brunswick Scientific) at $36^{\circ} \pm 1^{\circ}$ overnight ($\sim 18 \text{ h}$). The cells were killed with 0.75% phenol (final concentration) prior to harvesting using a Sharples continuous centrifuge (yield, ~ 3 g wet-weight/L).

Isolation of the lipopolysaccharide and preparation and purification of the O-polysaccharide. — Saline-washed cells of H. pleuropneumoniae serotype 3 were extracted by the lysozyme phenol-water method⁸. LPS was recovered from the dialyzed, separated phenol and aqueous layers by repeated ultracentrifugation at 105,000g (18 h at 4°) and were assessed to be pure by the carbocyanine dye assay⁹.

In order to obtain the O-polysaccharide, a solution of LPS (477 mg) in aqueous 2% acetic acid (300 mL) was heated for 2 h at 100° and the precipitated "lipid A" was removed by low-speed centrifugation. The supernatant solution was lyophilized and a solution of the residue in 0.05M pyridinium acetate (pH 4.7) was eluted from a column (2 × 100 cm) of Sephadex G-50 (Pharmacia) using the same buffer. Fractions (10 mL) were collected and analyzed colorimetrically for aldose¹0, aminodeoxyglycose¹¹, phosphate¹², and 3-deoxyoctulosonate¹³. The O-polysaccharide was purified by application to a column (1.2 × 35 cm) of DEAE-Sephacel (Pharmacia) equilibrated with 0.05M Tris−HCl buffer (pH 7.2), and elution (1-mL fractions) with the buffer (50 mL) followed by a 0→0.5M gradient of sodium chloride in the same buffer.

Analytical methods. — Quantitative colorimetric methods used were the phenol–sulfuric method for glycoses¹⁰, the modified Elson–Morgan method for 2-amino-2-deoxyglycoses¹¹, the method of Chen *et al.*¹² for phosphate, and the periodate oxidation–thiobarbituric acid method for 3-deoxyoctulosonate¹³.

G.l.c. was done with a Hewlett–Packard model 5830A chromatograph fitted with a flame-ionization detector and a model 18850A electronic integrator, under the following conditions: capillary column (0.32 mm \times 25 m), 007 series bonded phase, fused silica OV-17 (Quadrex Corp.); temperature programmes: A, 180° for 2 min then \rightarrow 240° at 4°/min; B, 200° for 2 min then \rightarrow 240° at 1°/min; C, a fused-silica capillary column (0.3 mm \times 30 m) containing DBWAX (J&W Scientific, Inc.); temperature programme, 180° \rightarrow 240° at 4°/min.

The carrier gas was dry nitrogen (30 mL/min) and retention times are quoted relative to those of D-glucitol hexa-acetate ($T_{\rm GA}$) or 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl-D-glucitol ($T_{\rm GM}$). G.l.c.-m.s. was done using a Hewlett-Packard 5985B system, employing the conditions A-C and an ionization potential of 70 eV.

Glycoses were determined by g.l.c. (programme A) of their alditol acetate derivatives¹⁴, using myo-inositol as the internal standard. Samples (0.5 mg) of oligoand poly-saccharide were hydrolyzed in sealed glass tubes with 10m hydrochloric acid (1 mL) for 15 min at 90°, or with 2m acid (1 mL) for 17 h at 100°, followed by concentration to dryness.

The configuration of glycoses was established by capillary g.l.c. of their acetylated (-)-2-butyl glycosides. Lipids were identified by g.l.c.-m.s. (programme C) of their methyl esters derived by sealed-tube methanolysis of samples (1 mg) with methanolic 3% hydrogen chloride for 4 h at 100° followed by neutralization

(Ag₂CO₃). T.l.c. was performed on Silica Gel 60 (Merck) with 1-propanol-conc. ammonia-water (6:3:1).

Gel filtration was performed on columns of Sephadex G-50 (2 × 100 cm) (Pharmacia) or Bio-Gel P-2 (200–400 mesh) (Bio-Rad Laboratories). The gel-filtration properties of the eluted materials are expressed in terms of their distribution coefficient $K_{\rm av}$; $K_{\rm av} = (V_{\rm e} - V_{\rm o})/(V_{\rm t} - V_{\rm o})$, where $V_{\rm e}$ is the elution volume of the specific material, $V_{\rm o}$ is the void volume of the system, and $V_{\rm t}$ is the total volume of the system.

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). — Samples (1 μ g) of LPS were analyzed in 14% polyacrylamide gels by electrophoresis in the presence of sodium dodecyl sulfate, and bands were detected by silver staining¹⁴.

Methylation analyses. — Samples (1–2 mg) were methylated according to the Hakomori procedure 17 and the products were isolated by partition between chloroform and water. Methylation products were hydrolyzed with 10m hydrochloric acid (1 mL) for 15 min at 90° or with M trifluoroacetic acid (1 mL) for 16 h at 100° . Solutions of the released methylated glycoses in water (2 mL) were treated for 16 h with sodium borodeuteride (12 mg). Each solution was acidified with dilute acetic acid and concentrated to dryness, and methanol (5 × 10 mL) was distilled from the residue which was then acetylated with acetic anhydride (1 mL) for 2 h at 115° . The products were analyzed by g.l.c.-m.s. (programme B).

Partial hydrolysis. — A solution of the O-polysaccharide (29 mg) in cold aqueous 48% hydrofluoric acid (1 mL) was kept for 72 h at 4°, then concentrated to dryness in high vacuum over NaOH. The residue was neutralized with aqueous 5% ammonium hydroxide and lyophilized. The products were fractionated by gel filtration on a column of Bio-Gel P-2.

Periodate oxidation. — A solution of the polysaccharide (41 mg) in distilled water (6 mL) was treated with 0.1 m sodium metaperiodate (6 mL) in the dark for 6 days at 4°. Excess of periodate was reduced by the addition of ethylene glycol (100 μ L), and the oxidized polymer was reduced with sodium borohydride (40 mg). After 16 h at 22°, the cooled solution was neutralized with dilute acetic acid, dialyzed until salt free, and lyophilized.

Smith-type hydrolysis of the periodate-oxidized and reduced polymer was effected with aqueous 2% acetic acid for 2 h at 100°, and the degradation products were fractionated by gel filtration on a column of Bio-Gel P-2 (200–400 mesh).

N.m.r. spectroscopy. — Proton-decoupled 13 C-n.m.r. spectra (125 MHz) were recorded at 24° for a 25-kHz spectral width, using a $\pi/2$ pulse and a 32k data set on a Bruker AM 500 spectrometer. DEPT experiments were performed for a 12.5-kHz spectral width, using a 3 $\pi/2$ proton pulse to distinguish between CH and CH₂ resonances. The delay between the pulses $(2J)^{-1}$ was set at 3.4 ms. Chemical shifts are expressed relative to internal acetone (1%, 31.07 p.p.m.).

¹H-N.m.r. spectra (500 MHz) were recorded at 24°, using a spectral width of 2.5 kHz, a π/2 pulse, and a 16k data set for a digital resolution of 0.3 Hz/point.

Chemical shifts are expressed relative to internal acetone (0.1%, 2.225 p.p.m.) and coupling constants are reported in Hz.

A sample of purified O-polysaccharide was passed through Chelex-100 (Bio-Rad) resin (3 mL) and then exchanged twice with D_2O (99.8%). Spectra were recorded on solutions (25 mg/mL; pD 9.0) in 99.8% D_2O (5-mm-diameter tubes).

Proton homonuclear-correlated 2D-n.m.r. experiments $COSY^{19}$, relay $COSY^{20}$, and J-resolved²¹ were performed at 24°, using the standard software provided by Bruker (DISNMR). Quadrature detection in both dimensions was employed in the COSY experiments. The initial (t_1, t_2) matrices of 256×2048 data points were zero-filled to 1024×2048 data points in order to provide digital resolution of 1 Hz/point in both domains. Resolution enhancement in both dimensions was done by non-shifted sine bell functions prior to Fourier transformation. Magnitude spectra, symmetrized about the diagonal, were used to represent the data. The number of transients per FID was 8 for the COSY experiment.

The 2D *J*-resolved spectrum was obtained using an initial data matrix of 128 \times 4096 points that was zero-filled to 256 \times 4096 points with a digital resolution of 0.6 Hz per point in the second domain.

A heteronuclear ¹³C-¹H shift correlation experiment was done on a Bruker AM 500 spectrometer using the CHORTLE (carbon-hydrogen correlations from one-dimensional polarization transfer spectra by least-squares analysis) technique²². The experiment was performed at 24° on a solution (70 mg/mL) of O-polysaccharide in D₂O. Four proton-evolution times of 0.24, 1.0, 2.4, and 3.2 ms were used with 4,000 transients per FID. Spin simulations were performed on an Aspect 3000 computer using the Bruker program PANIC. A line width of 2.0 Hz was used in all cases.

General methods. — Concentrations were made under reduced pressure and at <40°. Optical rotations were measured at 20° in 10-cm microtubes, using a Perkin-Elmer 243 polarimeter.

RESULTS AND DISCUSSION

Extraction of *Haemophilus pleuropneumoniae* serotype 3 cells (248 g, wet weight) by a modified lysozyme phenol-water procedure⁸, followed by purification of the LPS by repeated ultracentrifugation, afforded an aqueous-phase LPS (2.3 g) and a phenol-phase soluble LPS (96 mg). Both LPS were judged to be pure by the carbocyanine dye assay⁹, and SDS-PAGE analysis¹⁶ of both gave a typical separation pattern of an S-type LPS²³ in which the spacing of the bands was indicative of an O-chain having a pentasaccharide repeating-unit.

Partial hydrolysis of the aqueous phase LPS (710 mg) with hot dilute acetic acid gave an insoluble lipid A (122 mg). Gel filtration of the water-soluble products on Sephadex G-50 afforded an O-polysaccharide ($K_{\rm av}$ 0.03, 268 mg), a core oligosaccharide ($K_{\rm av}$ 0.65, 68 mg), and a low-molecular-weight product ($K_{\rm av}$ 0.76, 44 mg) containing 3-deoxy-2-octulosonate. The O-polysaccharide was contaminated

by phosphate-containing material (\sim 10%), presumed to be undegraded LPS²⁴. Purification of the O-chain was achieved by ion-exchange chromatography on DEAE-Sephacel; the O-polysaccharide was eluted at the void volume, whereas the phosphate-containing material was eluted at the beginning of the sodium chloride gradient.

The purified O-polysaccharide was readily soluble in water and had $[\alpha]_D$ +32° (c 6.7, water) (Anal. Found: C, 40.75; H, 5.99; N, 0.86; ash, 2.5%). On the basis of p.c., and g.l.c. of the derived alditol acetates and the acetylated derivatives of their (-)-2-butyl glycosides, the O-polysaccharide was found to be composed of D-glucose and D-galactose in the molar ratio ~2:3. The ¹H-n.m.r. spectrum (500 MHz, 24°) of the O-chain polysaccharide contained five signals for anomeric protons at 5.22 (unresolved, 1 H), 5.17 (unresolved, 1 H), 5.06 (d, 1 H, $J_{1,2}$ 3.7 Hz), 4.99 (d, 1 H, $J_{1,2}$ 3.8 Hz), and 4.66 p.p.m. (d, 1 H, $J_{1,2}$ 8.0 Hz), Consistent with these results, the ¹³C-n.m.r. spectrum (125 MHz, 24°) (Fig. 1) contained signals for anomeric carbons at 110.4, 106.8, 103.3, 99.0, and 98.8 p.p.m. The methylated and hydrolyzed O-chain afforded a product that, after reduction $(NaBD_4)$ and acetylation, gave g.l.c.-m.s. (programme B) results (Table I) which indicated that the O-chain of H. pleuropneumoniae serotype 3 is composed of linear pentasaccharide repeating-units containing $\rightarrow 3$)-D-Galf- $(1-, \rightarrow 3)$ -D-Glcp- $(1-, \rightarrow 2)$ -D-Galf- $(1-, \rightarrow 6)$ -D-Glcp- $(1-, \text{ and } \rightarrow 6)$ -D-Galp-(1-, The methylation data showed)that two D-galactose residues were furanoid, a conclusion substantiated by the

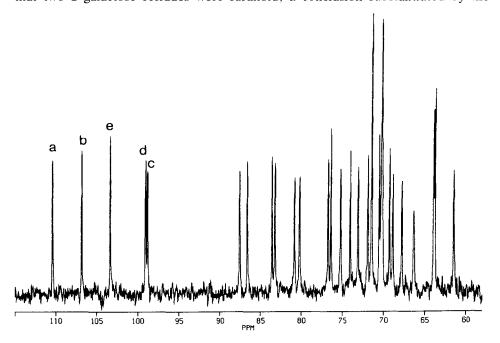
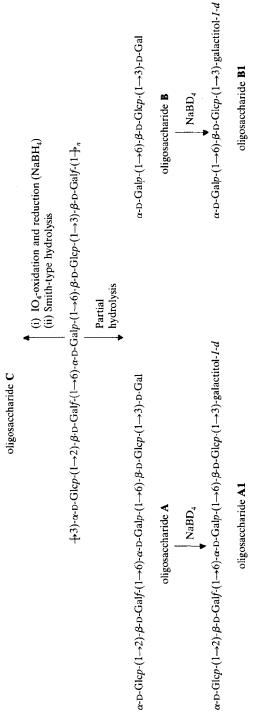


Fig. 1. ¹³C-N.m.r. spectrum (125 MHz, 24°) of the O-chain from smooth-type LPS of *H. pleuro-pneumoniae* serotype 3. The recorded assignments are based on a ¹³C, ¹H-CHORTLE experiment.

TABLE I	
G.L.CM.S. OF THE PRODUCTS OF METHYLATION ANALYSIS SEROTYPE 3 AND ITS DEGRADATION PRODUCTS	S OF THE O-CHAIN OF H. pleuropneumoniae

Derivative	$T_{\mathit{GM}}{}^{a}$	Molar	ratio		
		I^b	H^c	III^d	IV^e
1,4-Di-O-acetyl-2,3,5-tri-O-methyl-L-arabinitol-1-d	0.65				0.2
3-O-acetyl-1,2,4,5,6-penta-O-methyl-D-galactitol-1-d	0.72		0.3	0.4	
1,2,4-Tri-O-acetyl-3,5-di-O-methyl-L-arabinitol-1-d	0.85				0.4
1,5-Di-O-acetyl-2,3,4,6-tetra-O-methyl-D-glucitol-1-d	1.00		1.0		
1,5-Di-O-acetyl-2,3,4,6-tetra-O-methyl-D-galactitol-1-d	1.09			1.0	
1,3,4-Tri- <i>O</i> -acetyl-2,5,6-tri- <i>O</i> -methyl-D-galactitol- <i>1-d</i> 1,3,5-Tri- <i>O</i> -acetyl-2,4,6-tri- <i>O</i> -methyl-D-glucitol- <i>1-d</i>	1.37	1.8			1.0
1,2,4-Tri-O-acetyl-3,5,6-tri-O-methyl-D-galactitol-1-d	1.42	0.6	1.0		
1,5,6-Tri-O-acetyl-2,3,4-tri-O-methyl-D-glucitol-1-d	1.47	1.0	1.4	1.0	
1,5,6-Tri-O-acetyl-2,3,4-tri-O-methyl-D-galactitol-1-d	1.62	0.9	1.1		


^aRetention time of the derived additol acetate relative to that of 1,5-di-*O*-acetyl-2,3,4,6-tetra-*O*-methylglucitol-*I-d.* ^bOriginal O-chain. ^cOligosaccharide **A1** from partial hydrolysis. ^dOligosaccharide **B1** from partial hydrolysis. ^cOligosaccharide **C** obtained on Smith degradation (see text).

observed characteristic signals for anomeric carbons at 110.4 and 106.8 p.p.m. in the ¹³C-n.m.r. spectrum, and two signals at 5.27 and 5.17 p.p.m. in the region for anomeric protons of the ¹H-n.m.r. spectrum of the O-polysaccharide.

In order to sequence the proposed pentasaccharide repeating-unit, advantage was taken of the acid lability of the D-galactofuranosyl residues. Partial hydrolysis of the O-chain with aqueous 48% hydrofluoric acid, followed by gel filtration on Bio-Gel P-2, afforded oligosaccharides **A** and **B** (see Scheme 1).

Oligosaccharide **B** (K_{av} 0.65) had [α]_D +60° (c 0.37, water) and gave a single spot in t.l.c. (R_F 0.15). Reduction of **B** with NaBD₄ afforded oligosaccharide **B1**, which, on hydrolysis and g.l.c.-m.s. of the derived alditol acetates, was shown to contain D-glucose, D-galactose, and galactitol-I-d in the molar ratios 1:1:1. N.m.r. data: 1 H (500 MHz, 24°), 5.28 (d, 0.4 H, $J_{1,2}$ 3.1 Hz), 4.99 (d, 1 H, $J_{1,2}$ 2.9 Hz), 4.70 (d, 1 H, $J_{1,2}$ 8.1 Hz), 4.63 p.p.m. (d, 0.6 H, $J_{1,2}$ 7.9 Hz); 13 C (50 MHz, 27°); 104.4 (1 C), 98.9 (1 C), 96.9 (0.7 C), 93.0 p.p.m. (0.3 C). G.l.c.-m.s. of methylated **B1** (Table I, column III) in conjunction with the 1 H- and 13 C-n.m.r. data indicated **B** to be D-Galp-(1 \rightarrow 6)-D-Glcp-(1 \rightarrow 3)-D-Gal.

Oligosaccharide **A** ($K_{\rm av}$ 0.43) had [α]_D +84° (c 0.97, water) and gave a single spot in t.l.c. ($R_{\rm F}$ 0.07). Reduction of **A** with NaBD₄ gave oligosaccharide **A1**, which, by g.l.c.-m.s. of the derived alditol acetates, was shown to be a penta-saccharide composed of D-glucose, D-galactose, and galactitol-I-I-I in the molar ratios 2:2:1. N.m.r. data: I-IH (500 MHz, 24°), 5.28 (d, 0.3 H, I_{1,2} 3.2 Hz, H-1 α), 5.16 (d, 1 H, I_{1,2} <2 Hz), 5.06 (d, 1 H, I_{1,2} 3.6 Hz), 4.99 (d, 1 H, I_{1,2} 3.1 Hz), 4.72 (d, 0.3 H, I_{1,2} 8.3 Hz, H-1I), 4.70 (d, 0.7 H, I_{1,2} 8.1 Hz, H-1I), 4.63 p.p.m. (d, 0.7 H, I_{1,2} 7.9 Hz, H-1I); I3C (50 MHz, 27°), 106.7 (1 C), 104.0 (1 C), 98.8 (2 C), 96.9 (0.6 C), 92.9 p.p.m. (0.4 C).

 α -L-Araf- $(1\rightarrow 3)$ - α -D-Glcp- $(1\rightarrow 2)$ - α -L-Araf- $(1\rightarrow 1)$ -glycerol

Scheme 1. Degradation of the O-chain of H. pleuropneumoniae serotype 3 by periodate oxidation and by partial hydrolysis.

G.l.c.-m.s. of methylated **A1** (Table I) indicated that the D-glucopyranosyl unit formed the non-reducing end of the pentasaccharide and that the D-galactose residue formed the reducing end. The prior structural identification of B now permits the sequence of the pentasaccharide A to be established as D-Glcp- $(1\rightarrow 2)$ -D-Galf- $(1\rightarrow 6)$ -D-Galp- $(1\rightarrow 6)$ -D-Glep- $(1\rightarrow 3)$ -D-Gal. Further evidence for this structure was obtained from periodate-oxidation studies. Thus, periodate oxidation of the O-polysaccharide resulted in complete cleavage of the exocyclic 5,6-diol moiety of the D-galactofuranosyl residues. Reduction with sodium borohydride, followed by Smith-type hydrolysis with dilute acetic acid and subsequent gel-filtration chromatography of the products on Bio-Gel P-2 (Scheme 1), gave an oligosaccharide $\mathbb{C}(K_{av} \ 0.52)$, which had $[\alpha]_D \ -5.6^{\circ} \ (c \ 0.36, \text{ water})$, gave a single spot in t.l.c. $(R_{\rm F}\,0.45)$, and, on hydrolysis, reduction, and acetylation, yielded three peaks in g.l.c. identified as the acetates of glycerol ($T_{\rm GA}$ 0.10), arabinitol ($T_{\rm GA}$ 0.64), and glucitol ($T_{\rm GA}$ 1.00) in the molar ratios 0.1:0.6:1.0 (the glycerol arose from the oxidized 6-substituted D-galactopyranosyl residue). N.m.r. data: ¹H (500 MHz, 24°), 5.28 (unresolved, 1 H), 5.17 (d, 1 H, $J_{1,2}$ 2.0 Hz), 5.06 p.p.m. (d, 1 H, $J_{1,2}$ 3.5 Hz); ¹³C (125 MHz, 24°), 109.1 (1 C), 106.9 (1 C), 98.8 p.p.m. (1 C). As expected, the ¹³C-n.m.r. spectrum of C contained 19 signals, with two low-field signals at 109.1 and 106.9 p.p.m. arising from the anomeric carbons of two α -L-arabinofuranosyl residues. G.l.c.-m.s. of methylated C gave a fragmentation pattern consistent with the presence of a glycerol moiety at the potential reducing end. The following primary ions of the A series²⁴ were obtained which are characteristic of the terminal non-reducing pentosyl residue: m/z 175 (aA₁), 143 (aA₂), and 111 (aA₃). Those of the glycerol moiety were m/z 103 (dA₁), 323 (dcJ₁), and 527 (dcbJ₁). Expected secondary ions appeared at m/z 101, 89, 75, 71, and 45. G.l.c.m.s. in the c.i. mode confirmed the presence of two pentosyl residues, one hexosyl residue, and a glycerol moiety: peaks at m/z 175 (aA₁), 379 (abA₁), 539 (abcA₁), parent peaks $M^+ - 1$ at m/z 657 and M^+ at m/z 658 (Fig. 2). Methylation analysis of the tetrasaccharide C yielded products that, after reduction (NaBD₄) and acetylation, gave, in g.l.c.-m.s., the results shown in Table I. The combined ¹Hand ¹³C-n.m.r. evidence together with specific optical rotation and g.l.c.-m.s. data

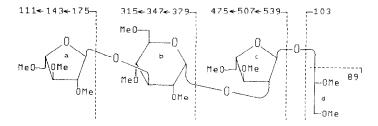


Fig. 2. G.l.c.-m.s. of the methylated oligosaccharide obtained after Smith degradation of the O-polysaccharide, with some primary and secondary fragments.

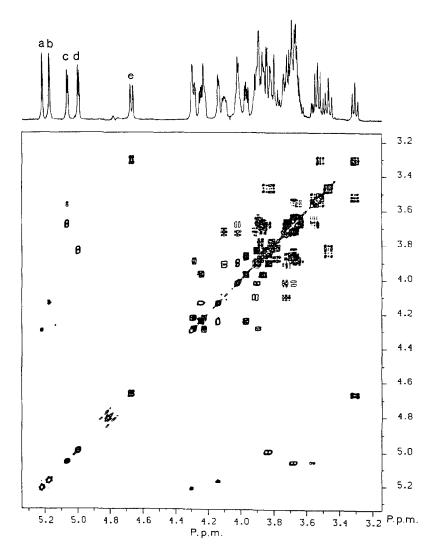


Fig. 3. COSY contour plot of the complete spectrum (5.25–3.15 p.p.m.) of H. pleuropneumonuae serotype 3 O-polysaccharide, recorded at 24° . The 1D spectrum is displayed along the F_2 axis.

allows the structure of \mathbb{C} to be identified as α -L-Araf- $(1\rightarrow 3)$ - α -D-Glcp- $(1\rightarrow 2)$ - α -L-Araf- $(1\rightarrow 1)$ -glycerol.

N.m.r. studies. — The determination of the anomeric configurations of the component monosaccharides and their ring sizes was achieved by complete assignment of the ¹H-n.m.r. spectra *via* COSY and relay COSY, followed by a ¹³C-¹H shift-correlated experiment (CHORTLE).

Assignments of the proton resonances of the O-chain were made from $COSY^{19}$ (Fig. 3) and relayed $COSY^{20}$ experiments. The residues in the O-chain

TABLE II

 $^{1} ext{H}$ chemical shifts g and coupling constants h for the $^{0} ext{-}$ chain polysaccharide of H uemophilik pleuropheumoniae sfrotype 3

Proton	Unit ac	Unit b	Unit e	Unit d	Unit e
	→3)-β-D-Ciall-(1→	→2)-β-D-Gall-(1→	→3)-α-D-CICp-(1→	→0/-α-0-Ωap-(1->	6-1)-010-0-9-10-6-
H-1	5.215 (1.4)	5.171 (2.0)	5.061 (3.7)	4.994 (3.8)	4.667 (8.0)
H-2	4.296 (2.7)	4.135 (4.0)	3.678 (9.8)	3.830 (10.0)	3.304 (9.2)
H-3	4.221 (5.3)	4.240 (7.4)	3.843 (9.3)	3.900 (3.8)	3.518 (9.4)
H-4	4,282 (3.1)	3.966 (3.9)	3.467 (9.3)	4.017 (1.0)	3.547 (9.4)
H-5	3.893 (4.0; 7.5)	3.861 (4.0; 7.5)	3.819 (2.2; 5.4)	4.099 (4.0; 9.0)	3.679 (1.0; 3.5)
9-H	3.669 (-12.0)	3.709 (-12.0)	3.878 (-12.3)	3.906 (-11.5)	3.728 (-11.5)
,9-H	3.646 (-12.0)	3.675 (-12.0)	3.782 (-12.3)	3.718 (+11.5)	4.016(-11.5)
The state of the s	A THE RESIDENCE OF THE PARTY OF	est des se en	Control to political to the control of the control	. It is the second and the second department of the second	A ST TO THE PROPERTY OF THE PR

"Simulated parameters obtained from spectra measured at 24° in D₂O (pD 9.0) with 0.1% of acetone as internal reference (2.225 p.p.m.). Hz. in parentheses. 'See formula 1.

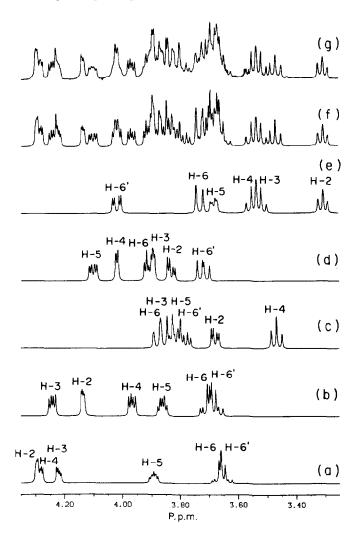


Fig. 4. ¹H-N.m.r. spectra of the O-polysaccharide of *H. pleuropneumoniae* serotype 3 at 24°: (g) observed spectrum; (f) simulated spectrum. The contributions to the simulated spectrum are shown in (a) for the \rightarrow 3)- β -D-Galf-(1 \rightarrow residue, in (b) for the \rightarrow 2)- β -D-Galf-(1 \rightarrow residue, in (c) for the \rightarrow 3)- α -D-Glcp-(1 \rightarrow residue, in (d) for the \rightarrow 6)- α -D-Galp-(1 \rightarrow residue, and in (e) for the \rightarrow 6)- β -D-Glcp-(1 \rightarrow residue.

polysaccharide were arbitrarily labelled **a–e** according to the decreasing order of the chemical shifts of the H-1 resonances. Following the cross-peaks, the majority of the proton resonances were readily assigned. Coupling constants were measured from the 2D *J*-resolved²¹ spectrum. The proton chemical shifts and coupling constants were refined (Table II) by simulating the ¹H-n.m.r. spectrum until a good agreement between the observed and calculated spectra was obtained (Fig. 4). The heteronuclear shift-correlated experiment (CHORTLE²²) enabled the un-

TABLE III

¹³C CHEMICAL SHIFTS⁴ OF THE O-CHAIN POLYSACCHARIDE^b FROM Haemophilus pleuropneumoniae

Carbon atom	Unit a° →3)-β-D-Galf-(1→	Unit b $\rightarrow 2$)- β -D-Gaif-($l \rightarrow$	Unit e $\rightarrow 3$)- α -D-Glcp- $(1\rightarrow$	Unit d $\rightarrow 6$)- α -D- $Galp$ - $(I\rightarrow$	Unit e $\rightarrow 6$)- β -D-Glcp- $(I\rightarrow$
-1	110.4	106.8	8.86	0 66	103.3
-2	80.8	87.6	71.9	69 3	74.1
-3	86.7	76.4	80.2	70.3	76.8
-4	83.6	83.3	6.89	70.3	20.07
C-5	71.5	71.5	73.1	9.02	75.3
9-	63.9	63.8	513	82.9	66.3

"In p.p.m. from internal acetone (1%, 31.07 p.p.m.). *Assignments confirmed by a 13C, 14-CHORTLE experiment. *See formula 1.

ambiguous assignments of all the carbon resonances in the repeating unit of the O-polysaccharide (Table III). Examination of 13 C chemical shifts (Table III) and a comparison of these with literature values²⁵ indicated that two furanose rings (residues **a** and **b**) and three pyranose rings (residues **c**-**e**) were involved in glycosidic linkages. In agreement with the results of the methylation analysis, C-3a, C-2b, C-3c, C-6d, and C-6e experienced significant deshielding. Based on the proton chemical shift data and $J_{1,2}$ values, residues **a** $(J_{1,2} 1.4 \text{ Hz})$ and **b** $(J_{1,2} 2.0 \text{ Hz})$ were assigned to β -D-Galf, residue **c** to α -D-Glcf $(J_{1,2} 3.7 \text{ Hz})$, residue **d** to α -D-Galf $(J_{1,2} 3.8 \text{ Hz})$, and residue **e** to β -D-Glcf $(J_{1,2} 8.0 \text{ Hz})$. The combined chemical and n.m.r. evidence permits the structure of the O-antigen chain to be established as the linear repeating pentasaccharide unit **1**.

$$+3)-\alpha-D-Glcp-(1\rightarrow 2)-\beta-D-Galf-(1\rightarrow 6)-\alpha-D-Galp-(1\rightarrow 6)-\beta-D-Glcp-(1\rightarrow 3)-\beta-D-Galf-(1\rightarrow n-2)-\beta-D-Galf-(1\rightarrow n$$

Core oligosaccharide. — The core oligosaccharide obtained from the aqueous-phase LPS had $[\alpha]_D$ +51° (c 3.4, water) and was composed of D-glucose, D-galactose, D-glycero-D-manno-heptose, and L-glycero-D-manno-heptose in the molar ratios 1.4:1.0:0.7:0.9.

Lipid A. — Methanolysis of lipid A with methanolic 2.5% hydrogen chloride for 16 h at 100° followed by g.l.c.-m.s. (programme C) showed the lipid A of the aqueous-phase LPS to be composed of the fatty acids: 3-hydroxydodecanoic acid (1.1%), n-tetradecanoic acid (27.3%), 3-hydroxytetradecanoic acid (70.4%), and n-hexadecanoic acid (1.2%). The lipid A also contained phosphate (3.2%) and 2-amino-2-deoxy-D-glucose (6.9%).

ACKNOWLEDGMENTS

We thank Mr. F. P. Cooper for the g.l.c.-m.s., and Mr. D. W. Griffith for the large-scale production of bacterial cells.

REFERENCES

- 1 A. GUNNARSSON, E. L. BIBERSTEIN, AND B. HURRELL, Am. J. Vet. Res., 38 (1977) 1111-1114.
- 2 S. ROSENDAL AND D. A. BOYD, J. Clin. Microbiol., 16 (1982) 840-843.
- 3 R. NIELSEN AND P. O'CONNOR, Acta Vet. Scand., 25 (1984) 96-106.
- 4 H. HANI, H. KONIG, J. NICOLET, AND E. SCHOLL, Schweiz. Arch. Tierheilkd., 115 (1973) 191-203.
- 5 B. W. FENWICK AND B. I. OSBURN, Infect. Immun., 54 (1986) 575-582.
- 6 E. Altman, J.-R. Brisson, and M. B. Perry, Biochem. Cell Biol., 64 (1986) 1317-1325.
- E. ALTMAN, J.-R. BRISSON, D. R. BUNDLE, AND M. B. PERRY, Biochem. Cell Biol., 65 (1987) 876–889.
- 8 K. G. JOHNSON AND M. B. PERRY, Can. J. Microbiol., 22 (1976) 29-34.
- 9 J. JANDA AND E. WORK, FEBS Lett., 16 (1971) 343-345.
- M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, Anal. Chem., 28 (1956) 350–356.
- 11 R. GATT AND E. R. BERMAN, Anal. Biochem., 15 (1965) 167-171.

- 12 P. S. CHEN, T. Y. TORIBARA, AND H. WARNER, Anal. Chem., 28 (1956) 1756-1758.
- 13 D. Aminoff, Biochem. J., 81 (1965) 384-392.
- 14 S. W. GUNNER, J. K. N. JONES, AND M. B. PERRY, Can. J. Chem., 39 (1961) 1892-1895.
- 15 K. LEONTEIN, B. LINDBERG, AND J. LÖNNGREN, Carbohydr. Res., 62 (1978) 359–362.
- 16 G. M. TSAI AND C. E. FRASCH, Anal. Biochem., 119 (1982) 115-119.
- 17 S. HAKOMORI, J. Biochem. (Tokyo), 55 (1964) 205-208.
- 18 D. M. DODDRELL, D. T. PEGG, AND M. R. BENDALL, J. Magn. Reson., 48 (1982) 323-327.
- 19 A. BAX, R. FREEMAN, AND G. MORRIS, J. Magn. Reson., 42 (1981) 164-168.
- 20 A. BAX AND G. DROBNY, J. Magn. Reson., 61 (1985) 306-320.
- 21 W. P. AUE, J. KARHAN, AND R. R. ERNST, J. Chem. Phys., 64 (1976) 4226-4227.
- 22 G. A. PEARSON, J. Magn. Reson., 64 (1985) 487-500.
- 23 M. B. PERRY AND L. A. BABIUK, Can. J. Biochem., 62 (1984) 108-114.
- 24 N. K. Kochetkov and O. S. Chizhov, Adv. Carbohydr. Chem., 21 (1966) 39–93.
- 25 K. BOCK AND C. PEDERSEN, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-66.